
Package: mapboxapi (via r-universe)
September 6, 2024

Type Package

Title R Interface to 'Mapbox' Web Services

Date 2024-09-06

Version 0.6.2

Maintainer Kyle Walker <kyle@walker-data.com>

Description Includes support for 'Mapbox' Navigation APIs, including
directions, isochrones, and route optimization; the Search API
for forward and reverse geocoding; the Maps API for interacting
with 'Mapbox' vector tilesets and visualizing 'Mapbox' maps in
R; and 'Mapbox Tiling Service' and 'tippecanoe' for generating
map tiles. See <https://docs.mapbox.com/api/> for more
information about the 'Mapbox' APIs.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

URL https://github.com/walkerke/mapboxapi,

https://walker-data.com/mapboxapi/

BugReports https://github.com/walkerke/mapboxapi/issues

Depends R (>= 3.3.0)

Imports httr, sf, jsonlite, purrr, curl, dplyr (>= 1.0.0), tidyr (>=
1.0.0), aws.s3, stringi, slippymath, protolite, rlang,
geojsonsf, magick, leaflet, units, raster, png, jpeg, htmltools

Suggests ggspatial, grDevices, mapdeck, tigris, tidycensus, tmap,
mapboxer, testthat (>= 3.0.0)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Config/testthat/edition 3

Repository https://walkerke.r-universe.dev

RemoteUrl https://github.com/walkerke/mapboxapi

RemoteRef HEAD

RemoteSha 9e00a3bdf94baf32a5273bcca85f8f3b12ea8eb4

1

https://docs.mapbox.com/api/
https://github.com/walkerke/mapboxapi
https://walker-data.com/mapboxapi/
https://github.com/walkerke/mapboxapi/issues

2 addMapboxTiles

Contents

addMapboxTiles . 2
check_upload_status . 4
feature_options . 4
geocoder_as_sf . 7
geocoder_as_xy . 7
get_static_tiles . 8
get_style . 9
get_vector_tiles . 10
layer_static_mapbox . 11
mapboxapi . 14
mapboxGeocoderInput . 14
mb_access_token . 15
mb_batch_geocode . 17
mb_directions . 19
mb_geocode . 21
mb_isochrone . 23
mb_matrix . 25
mb_optimized_route . 27
mts_create_source . 29
mts_create_tileset . 31
mts_get_recipe . 33
mts_list_sources . 35
mts_list_tilesets . 36
mts_make_recipe . 38
mts_publish_tileset . 40
mts_update_recipe . 42
mts_validate_recipe . 44
prep_overlay_markers . 46
query_tiles . 47
recipe_layer . 48
static_mapbox . 50
tile_options . 53
tippecanoe . 55
upload_tiles . 57

Index 59

addMapboxTiles Use a Mapbox style in a Leaflet map

Description

See the Mapbox Static Tiles API documentation for more information.

https://docs.mapbox.com/api/maps/static-tiles/

addMapboxTiles 3

Usage

addMapboxTiles(
map,
style_id,
username,
style_url = NULL,
scaling_factor = c("1x", "0.5x", "2x"),
access_token = NULL,
layerId = NULL,
group = NULL,
options = leaflet::tileOptions(),
data = leaflet::getMapData(map),
attribution = TRUE

)

Arguments

map A map widget object created by leaflet::leaflet()

style_id The style ID of a Mapbox style

username A Mapbox username

style_url A Mapbox style URL

scaling_factor The scaling factor to use when rendering the tiles. A scaling factor of "1x" (the
default) returns 512px by 512px tiles. A factor of "1x" returns 256x256 tiles,
and a factor of "2x" returns 1024x1024 tiles.

access_token Your Mapbox access token; which can be set with mb_access_token().

layerId the layer ID

group The name of the group the Mapbox tile layer should belong to (for use in Shiny
and to modify layers control in a Leaflet workflow)

options A list of extra options (optional)

data The data object used to derive argument values; can be provided to the initial
call to leaflet::leaflet()

attribution If TRUE, pass a standard attribution to leaflet::addTiles(). If FALSE, attri-
bution is NULL. attribution can also be a character string including HTML.

Value

A pointer to the Mapbox Static Tiles API which will be translated appropriately by the leaflet R
package.

Examples

Not run:

library(leaflet)
library(mapboxapi)

4 feature_options

leaflet() %>%
addMapboxTiles(
style_id = "light-v9",
username = "mapbox"

) %>%
setView(

lng = -74.0051,
lat = 40.7251,
zoom = 13

)

End(Not run)

check_upload_status Check the status of a Mapbox upload

Description

Check the status of a Mapbox upload

Usage

check_upload_status(upload_id, username, access_token = NULL)

Arguments

upload_id The upload ID

username Your account’s username

access_token Your Mapbox access token

feature_options Specify feature options for an MTS recipe layer

Description

Specify feature options for an MTS recipe layer

Usage

feature_options(
id = NULL,
bbox = NULL,
attributes = list(zoom_element = NULL, set = NULL, allowed_output = NULL),
filter = NULL,
simplification = NULL

)

feature_options 5

Arguments

id A column representing the feature ID. See https://docs.mapbox.com/mapbox-tiling-service/
reference/#id-expression.

bbox A bounding box within which rendered features will be clipped. See https://
docs.mapbox.com/mapbox-tiling-service/reference/#bounding-box.

attributes A named list of attribute transformations. zoom_element specifies how an at-
tribute should be made available at different zoom levels; set allows you to
calculate new attributes from existing attributes when processing the tiles; and
allowed_output specifies which columns should be carried through to the out-
put tiles. See https://docs.mapbox.com/mapbox-tiling-service/reference/
#feature-attributes.

filter An expression that determines how features in the tileset should be filtered. See
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-filters
for information on how to specify the filter.

simplification Rules for feature simplification. See https://docs.mapbox.com/mapbox-tiling-service/
reference/#feature-simplification for more information on how to spec-
ify this.

Value

A list of feature options, likely to be used in recipe_layer().

See Also

https://docs.mapbox.com/mapbox-tiling-service/reference/

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

https://docs.mapbox.com/mapbox-tiling-service/reference/#id-expression
https://docs.mapbox.com/mapbox-tiling-service/reference/#id-expression
https://docs.mapbox.com/mapbox-tiling-service/reference/#bounding-box
https://docs.mapbox.com/mapbox-tiling-service/reference/#bounding-box
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-attributes
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-attributes
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-filters
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-simplification
https://docs.mapbox.com/mapbox-tiling-service/reference/#feature-simplification
https://docs.mapbox.com/mapbox-tiling-service/reference/

6 feature_options

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

geocoder_as_sf 7

geocoder_as_sf Convert the result of a mapboxGeocoderInput() geocoded location
to an sf object

Description

Convert the result of a mapboxGeocoderInput() geocoded location to an sf object

Usage

geocoder_as_sf(input)

Arguments

input The name of the Shiny input using mapboxGeocoderInput(), likely something
like input$geocode

Value

An sf object that can be used downstream in your Shiny applications.

geocoder_as_xy Convert the results of a mapboxGeocoderInput() geocoded location
to XY coordinates

Description

Convert the results of a mapboxGeocoderInput() geocoded location to XY coordinates

Usage

geocoder_as_xy(input)

Arguments

input The name of the Shiny input using mapboxGeocoderInput(), likely something
like input$geocode

Value

A length-2 vector representing the geocoded longitude/latitude coordinates of the location.

8 get_static_tiles

get_static_tiles Get static tiles from a Mapbox style for use as a basemap

Description

This function queries the Mapbox Static Tiles API and composites the tiles as a raster suitable for
use as a basemap in tmap or ggplot2 (with the ggspatial::layer_spatial() function. It returns
a raster layer that corresponds either to an input bounding box or a buffered area around an input
shape.

Usage

get_static_tiles(
location,
zoom,
style_id,
username,
style_url = NULL,
scaling_factor = c("1x", "2x"),
buffer_dist = 5000,
units = "m",
crop = TRUE,
access_token = NULL

)

Arguments

location An input location for which you would like to request tiles. Can be a length-4
vector representing a bounding box, or an sf object. If an input sf object is
supplied, use the buffer_dist argument to control how much area you want
to capture around the layer. While the input sf object can be in an arbitrary
coordinate reference system, if a length-4 bounding box vector is supplied in-
stead it must represent WGS84 longitude/latitude coordinates and be in the order
c(xmin, ymin, xmax, ymax).

zoom The zoom level for which you’d like to return tiles.

style_id A Mapbox style ID; retrieve yours from your Mapbox account.

username A Mapbox username.

style_url A Mapbox style URL.

scaling_factor The scaling factor to use; one of "1x" or "2x".

buffer_dist The distance to buffer around an input sf object for determining tile extent,
specified in units. Defaults to 5000.

units Units of buffer_dist; defaults to "m" (meters). If buffer_dist is a units class
object, the units argument is ignored.

crop Whether or not to crop the result to the specified bounding box or buffer area.
Defaults to TRUE; FALSE will return the extent of the overlapping tiles.

https://docs.mapbox.com/api/maps/static-tiles/
https://r-tmap.github.io/tmap/
https://ggplot2.tidyverse.org/

get_style 9

access_token A Mapbox access token. Supply yours here or set globally with the mb_access_token()
function.

Value

A raster layer of tiles from the requested Mapbox style representing the area around the input
location. The raster layer is projected in the Web Mercator coordinate reference system.

Examples

Not run:

library(mapboxapi)
library(tigris)
library(tmap)
library(ggspatial)
library(ggplot2)

ny_tracts <- tracts("NY", "New York", cb = TRUE)

ny_tiles <- get_static_tiles(
location = ny_tracts,
zoom = 10,
style_id = "light-v9",
username = "mapbox"

)

tmap usage:
tm_shape(ny_tiles) +

tm_rgb() +
tm_shape(ny_tracts) +
tm_polygons(alpha = 0.5, col = "navy") +
tm_credits("Basemap (c) Mapbox, (c) OpenStreetMap",

position = c("RIGHT", "BOTTOM")
)

ggplot2 usage:
ggplot() +

layer_spatial(ny_tiles) +
geom_sf(data = ny_tracts, fill = "navy", alpha = 0.5) +
theme_void() +
labs(caption = "Basemap (c) Mapbox, (c) OpenStreetMap")

End(Not run)

get_style Get information about a style or list styles from a Mapbox account

10 get_vector_tiles

Description

See the Mapbox Styles API documentation for more information.

Usage

get_style(style_id, username, style_url = NULL, access_token = NULL)

list_styles(username, access_token = NULL)

Arguments

style_id A style ID

username A Mapbox username

style_url A Mapbox style URL

access_token A Mapbox public or secret access token; set with mb_access_token()

Value

get_style returns a list of information about your selected style. list_styles returns a data frame of
information about styles from a Mapbox account

get_vector_tiles Retrieve vector tiles from a given Mapbox tileset

Description

Retrieve vector tiles from a given Mapbox tileset

Usage

get_vector_tiles(tileset_id, location, zoom, access_token = NULL)

Arguments

tileset_id The name of the tileset ID; names can be retrieved from your Mapbox account

location The location for which you’d like to retrieve tiles. If the input is an sf object, the
function will return data for all tiles that intersect the object’s bounding box. If
the input is a coordinate pair or an address, data will be returned for the specific
tile that contains the input.

zoom The zoom level of the request; larger zoom levels will return more detail but will
take longer to process.

access_token A Mapbox access token; which can be set with mb_access_token().

Value

A list of sf objects representing the different layer types found in the requested vector tiles.

https://docs.mapbox.com/api/maps/styles/

layer_static_mapbox 11

Examples

Not run:

library(mapboxapi)
library(ggplot2)

vector_extract <- get_vector_tiles(
tileset_id = "mapbox.mapbox-streets-v8",
location = c(-73.99405, 40.72033),
zoom = 15

)

ggplot(vector_extract$building$polygons) +
geom_sf() +
theme_void()

End(Not run)

layer_static_mapbox Make a static Mapbox ggplot2 layer or tmap basemap

Description

These functions wrap static_mapbox() and ggspatial::layer_spatial() or tmap::tm_rgb()
to support the use of images from the Mapbox Static Maps API as ggplot2 or tmap basemaps.

Usage

layer_static_mapbox(
location = NULL,
buffer_dist = 1000,
units = "m",
style_id,
username,
style_url = NULL,
overlay_sf = NULL,
overlay_style = NULL,
overlay_markers = NULL,
width = NULL,
height = NULL,
scale = 0.5,
scaling_factor = c("1x", "2x"),
attribution = TRUE,
logo = TRUE,
before_layer = NULL,
access_token = NULL,
...

https://www.mapbox.com/static-maps
https://ggplot2.tidyverse.org/
https://r-tmap.github.io/tmap/

12 layer_static_mapbox

)

tm_static_mapbox(
location = NULL,
buffer_dist = 1000,
units = "m",
style_id,
username,
style_url = NULL,
overlay_sf = NULL,
overlay_style = NULL,
overlay_markers = NULL,
width = NULL,
height = NULL,
scale = 0.5,
scaling_factor = c("1x", "2x"),
attribution = TRUE,
logo = TRUE,
before_layer = NULL,
access_token = NULL,
...

)

Arguments

location An input location for which you would like to request tiles. Can be a length-4
vector representing a bounding box, or an sf object. If an input sf object is
supplied, use the buffer_dist argument to control how much area you want
to capture around the layer. While the input sf object can be in an arbitrary
coordinate reference system, if a length-4 bounding box vector is supplied in-
stead it must represent WGS84 longitude/latitude coordinates and be in the order
c(xmin, ymin, xmax, ymax).

buffer_dist The distance to buffer around an input sf object for determining static map,
specified in units. If location is a POINT object of 2 rows or less and buffer_dist
is 0 or NULL, a 1 unit buffer is applied to try to ensure the creation of a valid
bounding box for the map area.

units Units of buffer_dist; defaults to "m" (meters). If buffer_dist is a units class
object, the units argument is ignored.

style_id A style ID (required if style_url is NULL).

username A Mapbox username (required if style_url = NULL).

style_url A Mapbox style url; defaults to NULL.

overlay_sf The overlay sf object (optional). The function will convert the sf object to
GeoJSON then plot over the basemap style. Spatial data that are too large will
trigger an error, and should be added to the style in Mapbox Studio instead.

overlay_style A named list of vectors specifying how to style the sf overlay. Possible names
are "stroke", "stroke-width" (or "stroke_width"), "stroke-opacity" (or "stroke_opacity"),
"fill", and "fill-opacity" (or "fill_opacity"). The fill and stroke color values can

layer_static_mapbox 13

be specified as six-digit hex codes or color names, and the opacity and width val-
ues should be supplied as floating-point numbers. If overlay_style is NULL, the
style values can be pulled from columns with the same names in overlay_sf.

overlay_markers

The prepared overlay markers (optional). See the function prep_overlay_markers
for more information on how to specify a marker overlay.

width, height The map width and height; defaults to NULL

scale ratio to scale the output image; scale = 1 will return the largest possible image.
defaults to 0.5

scaling_factor The scaling factor of the tiles; either "1x" (the default) or "2x"

attribution Controls whether there is attribution on the image. Defaults to TRUE. If FALSE,
the watermarked attribution is removed from the image. You still have a legal
responsibility to attribute maps that use OpenStreetMap data, which includes
most maps from Mapbox. If you specify attribution = FALSE, you are legally
required to include proper attribution elsewhere on the webpage or document.

logo Controls whether there is a Mapbox logo on the image. Defaults to TRUE.

before_layer A character string that specifies where in the hierarchy of layer elements the
overlay should be inserted. The overlay will be placed just above the spec-
ified layer in the given Mapbox styles. List layer ids for a map style with
get_style(style_id = style_id, username = username, style_url = style_url,
access_token = access_token)[["layers"]][["id"]]

access_token A Mapbox access token; which can be set with mb_access_token.

... additional parameters passed to ggspatial::layer_spatial or tmap::tm_rgb

Details

This function uses a different approach than get_static_tiles(). Instead, layer_static_mapbox()
is based largely on layer_mapbox() in the snapbox package (available under a MIT license. There
are a few key differences between layer_static_mapbox() and layer_mapbox(). The "scale"
parameter is equivalent to the "scale_ratio" parameter for snapbox. Setting scale_factor = "2x"
is equivalent to setting retina = TRUE. Both functions return basemaps that are no larger than a
single tile (a maximum of 1280 by 1280 pixels).

For tm_static_mapbox(), tmap::tm_shape is called with projection = 3857 and tmap::tm_rgb is
called with max.value = 1.

Author(s)

Eli Pousson, <eli.pousson@gmail.com>

Anthony North, <anthony.jl.north@gmail.com>

Miles McBain, <miles.mcbain@gmail.com>

https://github.com/anthonynorth/snapbox/blob/master/LICENSE

14 mapboxGeocoderInput

mapboxapi An R interface to Mapbox web services

Description

Use Mapbox web services APIs for spatial data science and visualization projects in R. Usage of
the package is governed by the Mapbox Terms of Service.

Author(s)

Kyle Walker

See Also

Useful links:

• https://github.com/walkerke/mapboxapi

• https://walker-data.com/mapboxapi/

• Report bugs at https://github.com/walkerke/mapboxapi/issues

mapboxGeocoderInput Use Mapbox’s Geocoder widget in a Shiny application

Description

Use Mapbox’s Geocoder widget in a Shiny application

Usage

mapboxGeocoderInput(
inputId,
access_token = NULL,
placeholder = "Search",
search_within = NULL,
proximity = NULL,
limit = 5,
min_length = 2,
language = NULL

)

https://github.com/walkerke/mapboxapi
https://walker-data.com/mapboxapi/
https://github.com/walkerke/mapboxapi/issues

mb_access_token 15

Arguments

inputId The Shiny input ID
access_token The Mapbox access token (required); can be set with mb_access_token()

placeholder The placeholder to be used in the search box; defaults to ’Search’
search_within An sf object, or vector representing a bounding box of format c(min_longitude,

min_latitude, max_longitude, max_latitude) used to limit search results.
Defaults to NULL.

proximity A length-2 vector of longitude and latitude coordinates used to prioritize results
near to that location. Defaults to NULL.

limit The maximum number of results to show. Defaults to 5.
min_length The minimum number of characters the user must enter before results are shown.

Defaults to 2.
language The language to use for the geocoder. Per the Mapbox documentation, "Options

are IETF language tags comprised of a mandatory ISO 639-1 language code and
optionally one or more IETF subtags for country or script."

Value

A Mapbox geocoder widget as a Shiny input

mb_access_token Install or retrieve a Mapbox access token in your .Renviron for re-
peated use

Description

See the Mapbox API documentation for more information on access tokens and token scopes.

Usage

mb_access_token(token, overwrite = FALSE, install = FALSE)

get_mb_access_token(
token = NULL,
default = c("MAPBOX_PUBLIC_TOKEN", "MAPBOX_SECRET_TOKEN"),
secret_required = FALSE

)

list_tokens(
username,
default = NULL,
limit = NULL,
sortby = "created",
usage = NULL,
access_token = NULL

)

https://docs.mapbox.com/api/overview/#access-tokens-and-token-scopes

16 mb_access_token

Arguments

token A Mapbox access token; can be public (starting with ’pk’) or secret (starting
with ’sk’) scope, which the function will interpret for you.

overwrite Whether or not to overwrite an existing Mapbox access token. Defaults to
FALSE.

install if TRUE, will install the key in your .Renviron file for use in future sessions.
Defaults to FALSE.

default If TRUE, will only include the default token for an account. If FALSE, will include
all other tokens except for the default. Defaults to NULL.

secret_required

If TRUE, a secret token is required. If FALSE, the default token is provided first
and the other token provided second if the first is unavailable.

username The Mapbox username for which you’d like to list access tokens.

limit The maximum number of tokens to return. Defaults to NULL.

sortby How to sort the returned tokens; one of "created" or "modified".

usage If "pk", returns only public tokens; if "sk", returns only secret tokens. Defaults
to NULL, which returns all tokens in the scope of the supplied access token.

access_token Your Mapbox access token. If left NULL, will first check to see if you have a
secret token stored in .Renviron, then a public token.

Value

A tibble of information about tokens in your Mapbox account.

Examples

Not run:
my_token <- "..." # The token generated from your Mapbox account
mb_access_token(my_token, install = TRUE)
Sys.getenv("MAPBOX_PUBLIC_TOKEN")

get_mb_access_token()

End(Not run)
Not run:

token_list <- list_tokens(
username = "kwalkertcu", # You would use your own username here
limit = 10,
sortby = "modified" #'

)

End(Not run)

mb_batch_geocode 17

mb_batch_geocode Geocode addresses or locations in bulk using the Mapbox Batch
Geocoding API

Description

Geocode addresses or locations in bulk using the Mapbox Batch Geocoding API

Usage

mb_batch_geocode(
data,
search_column = NULL,
address_line1 = NULL,
address_number = NULL,
street = NULL,
block = NULL,
place = NULL,
region = NULL,
postcode = NULL,
locality = NULL,
neighborhood = NULL,
country = NULL,
permanent = FALSE,
limit = 1,
search_within = NULL,
language = NULL,
types = NULL,
proximity = NULL,
worldview = NULL,
allow_large_job = FALSE,
access_token = NULL,
sf = TRUE

)

Arguments

data An input data frame

search_column A column that contains a description of the place to geocode, or a full address.
search_column cannot be used with address component arguments.

address_line1 The name of a column in data that contains the first line of an address, e.g.
"1600 Pennsylvania Ave NW"

address_number The name of a column in data that contains the address number, e.g. "1600".
Not required when address_line1 is used.

street The name of a column in data that contains the street name, e.g. "Pennsylvania
Ave NW". Not required when address_line1 is used.

18 mb_batch_geocode

block The name of a column in data that describes the block, used in some Japanese
addresses.

place The name of a column in data that contains the place name; typically a city,
village, or municipality, e.g. "Washington"

region The name of a column in data that represents sub-national administrative fea-
tures, such as states in Mexico or the United States. Example: "DC"

postcode The name of a column in data representing the postal code of the address; this
will be a ZIP code in the United States, e.g. "20500"

locality The name of a column in data that describes official sub-city locations, such as
arrondissements in France.

neighborhood The name of a column in data that represents a colloquial neighborhood name
for the location.

country A character string or vector of ISO 3166 alpha-2 country codes within which
you would like to limit your search.

permanent Either FALSE (the default) when results are not intended to be stored, or TRUE
if the results are planned to be stored.

limit How many results to return per address. This is not currently accessible for users
and can only be 1.

search_within An sf object, or vector representing a bounding box of format c(min_longitude,
min_latitude, max_longitude, max_latitude) used to limit search results.
Defaults to NULL.

language The user’s language, which can help with interpretation of queries. Available
languages are found at https://docs.mapbox.com/api/search/#language-coverage.

types A vector of feature types to limit to which the search should be limited. Avail-
able options include 'country', 'region', 'postcode', 'district', 'place',
'locality', 'neighborhood', 'address', street, block, address. and 'secondary_address'.
If left blank, all types will be searched.

proximity proximity Either a vector of coordinates or an IP address string to bias the results
to favor locations near to the input location.

worldview Returns features intended for different regional or cultural groups. The US
('us') world view is returned by default.

allow_large_job

A boolean indicating that the user is OK with potential charges incurred to their
account due to a large geocoding job (over 1000 addresses). The Mapbox Free
Tier includes 100,000 free geocodes per month. Defaults to FALSE.

access_token The Mapbox access token (required); can be set with mb_access_token()

sf A boolean that determines whether the output will be an sf POINT object (TRUE,
the default) or a regular data frame (FALSE).

Value

The input dataset as an sf POINT object representing the geocoded locations, or the input dataset
with longitude, latitude, and matched address columns included.

https://docs.mapbox.com/api/search/#language-coverage

mb_directions 19

mb_directions Make a request to the Mapbox Directions API

Description

See the Mapbox Directions API documentation for more information.

Usage

mb_directions(
input_data = NULL,
origin = NULL,
destination = NULL,
profile = "driving",
output = "sf",
depart_at = NULL,
alternatives = NULL,
annotations = NULL,
bearings = NULL,
continue_straight = NULL,
exclude = NULL,
geometries = "geojson",
overview = "simplified",
radiuses = NULL,
approaches = NULL,
steps = NULL,
banner_instructions = NULL,
language = NULL,
roundabout_exits = NULL,
voice_instructions = NULL,
voice_units = NULL,
waypoint_names = NULL,
waypoint_targets = NULL,
waypoints = NULL,
walking_speed = NULL,
walkway_bias = NULL,
alley_bias = NULL,
access_token = NULL

)

Arguments

input_data An input dataset of class "sf", or a list of coordinate pairs for format c(longitude,
latitude). Cannot be used with an origin/destination pair.

origin An address or coordinate pair that represents the origin of your requested route.
Cannot be used with input_data.

https://docs.mapbox.com/api/navigation/directions/

20 mb_directions

destination An address or coordinate pair that represents the destination of your requested
route.

profile One of "driving" (the default), "driving-traffic", "walking", or "cycling".

output One of "sf" (the default), which returns an sf LINESTRING representing the
route geometry, or "full", which returns the full request from the Directions API
as a list.

depart_at (optional) For the "driving" or "driving-traffic" profiles, the departure date and
time to reflect historical traffic patterns. If "driving-traffic" is used, live traffic
will be mixed in with historical traffic for dates/times near to the current time.
Should be specified as an ISO 8601 date/time, e.g. "2022-03-31T09:00".

alternatives Whether or not to return alternative routes with your request. If TRUE, a list of
up to 3 possible routes will be returned.

annotations A comma-separated string of additional route metadata, which may include du-
ration, distance, speed, and congestion. Must be used with overview = "full".

bearings A semicolon-delimited character string of bearings
continue_straight

continue_straight

exclude Road types to exclude from your route; possible choices are 'toll', 'motorway',
or 'ferry'. Defaults to NULL.

geometries The route geometry format. If output = 'sf', you will get back an sf object
and you should leave this blank. If output = 'full', the embedded route ge-
ometries will be one of 'geojson' (the default), 'polyline' with five decimal
place precision, or 'polyline6'.

overview If left blank, defaults to 'simplified' for simplified geometry; the other option
is 'full' which provides the most detailed geometry available.

radiuses A character string with semicolon-separated radii that specify the distance (in
meters) to snap each input coordinate to the road network. Defaults to NULL.

approaches A character string with semicolon-separated specifications for how to approach
waypoints. Options include unrestricted and curb. Defaults to NULL which
uses unrestricted for all waypoints.

steps If TRUE, returns the route object split up into route legs with step-by-step instruc-
tions included. If FALSE or NULL (the default), a single line geometry represent-
ing the full route will be returned.

banner_instructions

Whether or not to return banner objects; only available whenoutput = 'full'
and steps = TRUE.

language The language of the returned instructions (defaults to English). Available lan-
guage codes are found at https://docs.mapbox.com/api/navigation/#instructions-languages.
Only available when steps = TRUE.

roundabout_exits

If TRUE, adds instructions for roundabout entrance and exit. Only available
when steps = TRUE.

voice_instructions, voice_units
Only available when steps = TRUE and output = 'full'.

https://docs.mapbox.com/api/navigation/#instructions-languages

mb_geocode 21

waypoint_names, waypoint_targets, waypoints
Only available when steps = TRUE and output = 'full'.

walking_speed The walking speed in meters/second; available when profile = 'walking'.

walkway_bias Can take values between -1 and 1, where negative numbers avoid walkways and
positive numbers prefer walkways. Available when profile = 'walking'.

alley_bias Can take values between -1 and 1, where negative numbers avoid alleys and
positive numbers prefer alleys. Available when profile = 'walking'.

access_token A Mapbox access token; which can be set with mb_access_token()

Value

An sf object (or list of sf objects), or full R list representing the API response.

Examples

Not run:
library(mapboxapi)
library(leaflet)

my_route <- mb_directions(
origin = "10 Avenue de Wagram, 75008 Paris France",
destination = "59 Rue de Tocqueville, 75017 Paris France",
profile = "cycling",
steps = TRUE,
language = "fr"

)

leaflet(my_route) %>%
addMapboxTiles(

style_id = "light-v9",
username = "mapbox"

) %>%
addPolylines()

End(Not run)

mb_geocode Geocode an address or place description using the Mapbox Geocod-
ing API

Description

See the Mapbox Geocoding API documentation for more information.

https://docs.mapbox.com/api/search/geocoding/

22 mb_geocode

Usage

mb_geocode(
search_text = NULL,
structured_input = NULL,
permanent = FALSE,
autocomplete = TRUE,
limit = 1,
types = NULL,
search_within = NULL,
language = NULL,
country = NULL,
proximity = NULL,
worldview = NULL,
output = "coordinates",
access_token = NULL

)

mb_reverse_geocode(
coordinates,
permanent = FALSE,
limit = 1,
language = NULL,
types = NULL,
country = NULL,
worldview = NULL,
output = "text",
access_token = NULL

)

Arguments

search_text The text to search, formatted as a character string. Can be an address, a location,
or a description of a point of interest.

structured_input

A named list of structured address inputs, to be used in place of search_text
when more formal address inputs are desired. Available parameters, to be used
as the names of list elements, include ’address_line1’, ’address_number’, ’street’,
’block’, ’place’, ’region’, ’locality’, ’neighborhood’, and ’country’. See here for
more documentation: https://docs.mapbox.com/api/search/geocoding/
#forward-geocoding-with-structured-input.

permanent Either FALSE (the default) when results are not intended to be stored, or TRUE
if the results are planned to be stored.

autocomplete Whether or not to return autocomplete results. Defaults to FALSE.

limit How many results to return; defaults to 1 (maximum 10).

types A vector of feature types to limit to which the search should be limited. Avail-
able options include 'country', 'region', 'postcode', 'district', 'place',

https://docs.mapbox.com/api/search/geocoding/#forward-geocoding-with-structured-input
https://docs.mapbox.com/api/search/geocoding/#forward-geocoding-with-structured-input

mb_isochrone 23

'locality', 'neighborhood', 'address', street, block, address. and 'secondary_address'.
If left blank, all types will be searched.

search_within An sf object, or vector representing a bounding box of format c(min_longitude,
min_latitude, max_longitude, max_latitude) used to limit search results.
Defaults to NULL.

language The user’s language, which can help with interpretation of queries. Available
languages are found at https://docs.mapbox.com/api/search/#language-coverage.

country A character string or vector of ISO 3166 alpha-2 country codes within which
you would like to limit your search.

proximity Either a vector of coordinates or an IP address string to bias the results to favor
locations near to the input location.

worldview Returns features intended for different regional or cultural groups. The US
('us') world view is returned by default.

output one of "text" (the default), which will return a character string or list of char-
acter strings representing the returned results; output = "sf", returning an sf
object; or "full", which will return a list with the full API response.

access_token The Mapbox access token (required); can be set with mb_access_token()

coordinates The coordinates of a location in format c(longitude, latitude) for which
you’d like to return information.

Value

A character vector, list, or sf object representing the query results.

Examples

Not run:

whitehouse <- mb_geocode("1600 Pennsylvania Ave, Washington DC")

End(Not run)

Not run:

mb_reverse_geocode(c(77.5958768, 12.9667046), limit = 5, types = "address")

End(Not run)

mb_isochrone Generate isochrones using the Mapbox Navigation Service Isochrone
API

https://docs.mapbox.com/api/search/#language-coverage

24 mb_isochrone

Description

This function returns isochrones from the Mapbox Navigation Service Isochrone API. Isochrones
are shapes that represent the reachable area around one or more locations within a given travel time.
Isochrones can be computed for driving, walking, or cycling routing profiles, and can optionally
be set to return distances rather than times. mb_isochrone() returns isochrones as simple features
objects in the WGS 1984 geographic coordinate system.

Usage

mb_isochrone(
location,
profile = "driving",
time = c(5, 10, 15),
distance = NULL,
depart_at = NULL,
access_token = NULL,
denoise = 1,
generalize = NULL,
geometry = "polygon",
output = "sf",
rate_limit = 300,
keep_color_cols = FALSE,
id_column = NULL

)

Arguments

location A vector of form c(longitude, latitude), an address that can be geocoded
as a character string, or an sf object.

profile One of "driving", "walking", "cycling", or "driving-traffic". "driving" is the
default.

time A vector of isochrone contours, specified in minutes. Defaults to c(5, 10, 15).
The maximum time supported is 60 minutes. Reflects traffic conditions for the
date and time at which the function is called. If reproducibility of isochrones is
required, supply an argument to the depart_at parameter.

distance A vector of distance contours specified in meters. If supplied, will supercede any
call to the time parameter as time and distance cannot be used simultaneously.
Defaults to NULL.

depart_at (optional) For the "driving" or "driving-traffic" profiles, the departure date and
time to reflect historical traffic patterns. If "driving-traffic" is used, live traffic
will be mixed in with historical traffic for dates/times near to the current time.
Should be specified as an ISO 8601 date/time, e.g. "2022-03-31T09:00". If
NULL (the default), isochrones will reflect traffic conditions at the date and time
when the function is called.

access_token A valid Mapbox access token.

denoise A floating-point value between 0 and 1 used to remove smaller contours. 1 is
the default and returns only the largest contour for an input time.

https://docs.mapbox.com/api/navigation/isochrone/

mb_matrix 25

generalize A value expressed in meters of the tolerance for the Douglas-Peucker general-
ization algorithm used to simplify the isochrone shapes. If NULL (the default),
the Mapbox API will choose an optimal value for you.

geometry one of "polygon" (the default), which returns isochrones as polygons, or alter-
natively "linestring", which returns isochrones as linestrings.

output one of "sf" (the default), which returns an sf object representing the isochrone(s),
or "list", which returns the GeoJSON response from the API as an R list.

rate_limit The rate limit for the API, expressed in maximum number of calls per minute.
For most users this will be 300 though this parameter can be modified based on
your Mapbox plan. Used when location is "sf".

keep_color_cols

Whether or not to retain the color columns that the Mapbox API generates by
default (applies when the output is an sf object). Defaults to FALSE.

id_column If the input dataset is an sf object, the column in your dataset you want to use
as the isochrone ID. Otherwise, isochrone IDs will be identified by row index or
position.

Value

An sf object representing the isochrone(s) around the location(s).

Examples

Not run:

library(mapboxapi)
library(mapdeck)
isochrones <- mb_isochrone("The Kremlin, Moscow Russia",

time = c(4, 8, 12),
profile = "walking"

)

mapdeck(style = mapdeck_style("light")) %>%
add_polygon(
data = isochrones,
fill_colour = "time",
fill_opacity = 0.5,
legend = TRUE

)

End(Not run)

mb_matrix Retrieve a matrix of travel times from the Mapbox Directions API

26 mb_matrix

Description

Retrieve a matrix of travel times from the Mapbox Directions API

Usage

mb_matrix(
origins,
destinations = NULL,
profile = "driving",
fallback_speed = NULL,
output = c("duration", "distance"),
duration_output = c("minutes", "seconds"),
access_token = NULL,
depart_at = NULL,
allow_large_matrix = FALSE

)

Arguments

origins The input coordinates of your request. Acceptable inputs include a list of co-
ordinate pair vectors in c(x, y) format or an sf object. For sf linestrings or
polygons, the distance between centroids will be taken.

destinations The destination coordinates of your request. If NULL (the default), a many-to-
many matrix using origins will be returned.

profile One of "driving" (the default), "driving-traffic", "walking", or "cycling".

fallback_speed A value expressed in kilometers per hour used to estimate travel time when
a route cannot be found between locations. The returned travel time will be
based on the straight-line estimate of travel between the locations at the specified
fallback speed.

output one of "duration" (the default), which will be measured in either minutes or
seconds (depending on the value of duration_output), or "distance", which
will be returned in meters.

duration_output

one of "minutes" (the default) or "seconds"

access_token A Mapbox access token (required)

depart_at (optional) For the "driving" or "driving-traffic" profiles, the departure date and
time to reflect historical traffic patterns. If "driving-traffic" is used, live traffic
will be mixed in with historical traffic for dates/times near to the current time.
Should be specified as an ISO 8601 date/time, e.g. "2023-03-31T09:00". The
time must be set to the current time or in the future.

allow_large_matrix

mb_matrix() will prevent the user from calculating large travel-time matrices
(greater than 25x25) by default, as they may lead to unexpected charges. If
the user sets this argument to TRUE, mb_matrix() will bypass this error and
calculate the large matrix for the user. Defaults to FALSE.

mb_optimized_route 27

Value

An R matrix of source-destination travel times.

Examples

Not run:

library(mapboxapi)
library(tigris)
library(mapdeck)

philly_tracts <- tracts("PA", "Philadelphia", cb = TRUE, class = "sf")
downtown_philly <- mb_geocode("Philadelphia City Hall, Philadelphia PA")

time_to_downtown <- mb_matrix(philly_tracts, downtown_philly)

philly_tracts$time <- time_to_downtown

mapdeck(style = mapdeck_style("light")) %>%
add_polygon(
data = philly_tracts,
fill_colour = "time",
fill_opacity = 0.6,
legend = TRUE

)

End(Not run)

mb_optimized_route Return an optimized route for a series of input coordinates

Description

Return an optimized route for a series of input coordinates

Usage

mb_optimized_route(
input_data,
profile = c("driving", "walking", "cycling", "driving-traffic"),
output = "sf",
source = c("any", "first"),
destination = c("any", "last"),
roundtrip = TRUE,
annotations = NULL,
approaches = NULL,
bearings = NULL,
distributions = NULL,

28 mb_optimized_route

language = NULL,
overview = "simplified",
radiuses = NULL,
steps = NULL,
access_token = NULL

)

Arguments

input_data An input dataset of class "sf", or a list of coordinate pairs of format c(longitude,
latitude). Must be between 2 and 12 coordinate pairs.

profile One of "driving" (the default), "driving-traffic", "walking", or "cycling".

output One of "sf" (the default), which returns an sf LINESTRING representing the
route geometry, or "full", which returns the full request from the Directions API
as a list.

source One of "any" (the default) or "first". If "any" is specified, any of the input
coordinates may be used as the starting point. If "first" is specified, the first
coordinate will be used.

destination One of "any" (the default) or "last". If "any" is specified, any of the input
coordinates may be used as the ending point. If "last" is specified, the last coor-
dinate will be used.

roundtrip If TRUE (the default), the route will start and end at the same point. roundtrip
= FALSE only works when source is "first" and destination is "last". If
FALSE is supplied here, the route will start at the first point in input_data and
end at the last point.

annotations A comma-separated string of additional route metadata, which may include du-
ration, distance, speed, and congestion. Must be used with overview = "full".

approaches A character string with semicolon-separated specifications for how to approach
waypoints. Options include unrestricted and curb. Defaults to NULL which
uses unrestricted for all waypoints.

bearings A semicolon-delimited character string of bearings.

distributions A semicolon-delimited character string of number pairs that specifies pick-up
and drop-off locations. The first number indicates the index of the pick-up loca-
tion, and the second number represents the index of the drop-off location.

language The language of the returned instructions (defaults to English). Available lan-
guage codes are found at https://docs.mapbox.com/api/navigation/#instructions-languages.
Only available when steps = TRUE.

overview If left blank, defaults to 'simplified' for simplified geometry; the other option
is 'full' which provides the most detailed geometry available.

radiuses A character string with semicolon-separated radii that specify the distance (in
meters) to snap each input coordinate to the road network. Defaults to NULL.

steps If TRUE, returns the route object split up into route legs with step-by-step instruc-
tions included. If FALSE or NULL (the default), a single line geometry represent-
ing the full route will be returned.

access_token Your Mapbox access token; which can be set with mb_access_token()

https://docs.mapbox.com/api/navigation/#instructions-languages

mts_create_source 29

Value

Either a list of two sf objects - one representing the waypoints, and one representing the route - or
an R list representing the full optimization API response.

Examples

Not run:

library(mapboxapi)
library(sf)

to_visit <- data.frame(
X = c(-0.209307, -0.185875, -0.216877, -0.233511, -0.234541),
Y = c(5.556019, 5.58031, 5.582528, 5.566771, 5.550209)

) %>%
st_as_sf(coords = c("X", "Y"), crs = 4326)

optimized_route <- mb_optimized_route(to_visit,
profile = "driving-traffic"

)

End(Not run)

mts_create_source Create a Mapbox tileset source from a sf object using the Mapbox
Tiling Service API

Description

The mts_create_source() function can be used to create a tileset source or append to an existing
tileset source. This function publishes a simple features object you’ve created in R to your Mapbox
account, where it is stored as line-delimited GeoJSON. A tileset source is required to create a vector
tileset, and the same source can be used across multiple tilesets.

Usage

mts_create_source(data, tileset_id, username, access_token = NULL)

Arguments

data An input simple features object

tileset_id The tileset ID. If the tileset ID already exists in your Mapbox account, this func-
tion will overwrite the existing source with a new source.

username Your Mapbox username

access_token Your Mapbox access token with secret scope. Install with mb_access_token()
after you retrieve it from your Mapbox account.

30 mts_create_source

Value

A list of the MTS API’s responses, including the name of the tileset source in your Mapbox account.
You’ll use this name to build a MTS recipe.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset-source

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset-source

mts_create_tileset 31

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

mts_create_tileset Create a tileset with the Mapbox Tiling Service API

Description

After you’ve uploaded your spatial data to your Mapbox account with mts_create_source and
prepared a valid recipe with mts_make_recipe(), you can use your source and recipe to create a
vector tileset. This tileset will be hosted at your Mapbox account. Once created successfully, you
will need to publish the tileset using mts_publish_tileset to use it in Mapbox Studio, Mapbox
GL JS, or an R package that can read Mapbox tilesets.

Usage

mts_create_tileset(
tileset_name,
username,
recipe,

32 mts_create_tileset

request_name = tileset_name,
access_token = NULL

)

Arguments

tileset_name The name of the MTS tileset you intend to create

username Your Mapbox username

recipe An MTS recipe, created with mts_make_recipe()

request_name The name of the request; defaults to the tileset name

access_token Your Mapbox access token

Value

The response from the API, formatted as an R list.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset

mts_get_recipe 33

username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

mts_get_recipe Retrieve the recipe for an MTS tileset in your Mapbox account

Description

Retrieve the recipe for an MTS tileset in your Mapbox account

34 mts_get_recipe

Usage

mts_get_recipe(tileset_name, username, access_token = NULL)

Arguments

tileset_name The tileset name for which you’d like to retrieve a recipe

username Your Mapbox username

access_token Your Mapbox access token with secret scope

Value

The recipe for your tileset as an R list

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#retrieve-a-tilesets-recipe

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#retrieve-a-tilesets-recipe

mts_list_sources 35

appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

mts_list_sources List tileset sources in your Mapbox account

Description

List tileset sources in your Mapbox account

36 mts_list_tilesets

Usage

mts_list_sources(
username,
sortby = c("created", "modified"),
limit = 100,
start = NULL,
access_token = NULL

)

Arguments

username Your Mapbox username

sortby One of "created" or "modified"; the returned data frame will be sorted by
one of these two options.

limit The number of tileset sources to return; defaults to 100. The maximum number
of tileset sources returned by this endpoint is 2000.

start The source ID at which to start the list of sources; defaults to NULL.

access_token Your Mapbox access token with secret scope.

Value

A data frame containing information on your tileset sources.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset-source

Examples

Not run:
source_list <- mts_list_sources(username = "your_mapbox_username")

End(Not run)

mts_list_tilesets List tilesets in a Mapbox account

Description

List tilesets in a Mapbox account

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#create-a-tileset-source

mts_list_tilesets 37

Usage

mts_list_tilesets(
username,
type = NULL,
visibility = NULL,
sortby = c("created", "modified"),
limit = 100,
start = NULL,
access_token = NULL

)

Arguments

username A Mapbox username

type (optional) Return only "vector" or "raster" tilesets. If left blank, all tilesets
will be returned.

visibility Return only "public" or "private" tilesets. Public tilesets can be returned
with any public access token; private tilesets require the user’s access token
with secret scope.

sortby One of "created" or "modified"; the returned data frame will be sorted by
one of these two options.

limit The number of tilesets to return; defaults to 100. The maximum number of
tilesets returned by this endpoint is 500.

start The tileset ID at which to start the list of sources; defaults to NULL.

access_token Your Mapbox access token with secret scope.

Value

A data frame containing information on available tilesets in a given Mapbox account.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#list-tilesets

Examples

Not run:
tileset_list <- mts_list_tilesets(username = "your_mapbox_username")

End(Not run)

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#list-tilesets

38 mts_make_recipe

mts_make_recipe Prepare a recipe for use with the Mapbox Tiling Service

Description

Prepare a recipe for use with the Mapbox Tiling Service

Usage

mts_make_recipe(...)

Arguments

... One or more named lists that represent layers in the Mapbox Tiling Service
recipe specification (https://docs.mapbox.com/mapbox-tiling-service/
reference/#layer-example). These lists can be prepared with the helper
function recipe_layer(), or prepared by hand if the user prefers. If multi-
ple layers are included, a multi-layer recipe will be prepared that can produce
tilesets with multiple sources.

Value

An R list representing an MTS recipe to be used to create a tileset.

See Also

https://docs.mapbox.com/mapbox-tiling-service/reference/

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,

https://docs.mapbox.com/mapbox-tiling-service/reference/#layer-example
https://docs.mapbox.com/mapbox-tiling-service/reference/#layer-example
https://docs.mapbox.com/mapbox-tiling-service/reference/

mts_make_recipe 39

geometry = TRUE
)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

40 mts_publish_tileset

End(Not run)

mts_publish_tileset Publish a tileset with Mapbox Tiling Service

Description

mts_publish_tileset() publishes an existing vector tileset at your Mapbox account, allowing
you to use the vector tiles in your projects. The tileset name will be the same name you specified in
mts_create_tileset().

Usage

mts_publish_tileset(tileset_name, username, access_token = NULL)

Arguments

tileset_name The name of the tileset (as supplied to mts_create_tileset())

username Your Mapbox username

access_token Your Mapbox access token

Details

The published tileset will conform to rules specified in its recipe. If you want to change the recipe
for a tileset, use mts_update_recipe() then re-publish the tileset with a call to mts_publish_tileset()
once more.

Value

The response from the Mapbox Tiling Service API, formatted as an R list.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#publish-a-tileset

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#publish-a-tileset

mts_publish_tileset 41

geometry = TRUE
)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe

42 mts_update_recipe

mts_update_recipe(tileset_name = "median_age_acs",
username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

mts_update_recipe Update a tileset’s MTS recipe

Description

Update a tileset’s MTS recipe

Usage

mts_update_recipe(tileset_name, username, recipe, access_token = NULL)

Arguments

tileset_name The name of your Mapbox tileset

username Your Mapbox username

recipe The new recipe for your tileset, likely created with mts_make_recipe().

access_token Your Mapbox access token

Value

If the update is successful, the function will print a message informing you of its success. Otherwise,
a list of responses from the API will be returned letting you know why the request was invalid.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#update-a-tilesets-recipe

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#update-a-tilesets-recipe

mts_update_recipe 43

state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

44 mts_validate_recipe

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

mts_validate_recipe Validate a Mapbox Tiling Service recipe

Description

Validate a Mapbox Tiling Service recipe

Usage

mts_validate_recipe(recipe, access_token = NULL)

Arguments

recipe A recipe list, created with mts_make_recipe()

access_token Your Mapbox access token.

Value

A response from the API indicating whether the MTS recipe is valid or not. If the recipe is valid,
returns TRUE, allowing you to use the output of this function for error handling pipelines. If the
recipe is invalid, the function returns FALSE and prints the API response telling you why the recipe
is invalid.

See Also

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#validate-a-recipe

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",

https://docs.mapbox.com/api/maps/mapbox-tiling-service/#validate-a-recipe

mts_validate_recipe 45

variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

46 prep_overlay_markers

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

prep_overlay_markers Prepare overlay markers for use in a Mapbox static map

Description

Markers are prepared to match GeoJSON marker-spec which is a partial implementation of the
GeoJSON simplestyle-spec (described as a work-in-progress by Mapbox).

Usage

prep_overlay_markers(
data = NULL,
marker_type = c("pin-s", "pin-l", "url"),
label = NA,
color = NA,
longitude = NULL,
latitude = NULL,
url = NA

)

Arguments

data An input data frame with longitude and latitude columns (X and Y or lon and
lat as names are also acceptable) or an sf object with geometry type POINT.

marker_type The marker type; one of "pin-s", for a small pin; "pin-l", for a large pin; and
"url", for an image path. If marker_type is the same length as the rows in data,
a mix of different marker types are allowed.

label The marker label (optional). Can be a letter, number (0 through 99), or a valid
Maki icon (see https://labs.mapbox.com/maki-icons/) for options).

color The marker color (optional). color can be specified as a color name or as a
three or six-digit hexadecimal code (with or without the number sign).

longitude A vector of longitudes; inferred from the input dataset if data is provided.

latitude A vector of latitudes; inferred from the input dataset if data is provided.

url The URL of the image to be used for the icon if marker_type = "url".

https://github.com/mapbox/mapbox-gl-markers#geojson-marker-spec
https://github.com/mapbox/simplestyle-spec/tree/master/1.1.0
https://labs.mapbox.com/maki-icons/

query_tiles 47

Value

A formatted list of marker specifications that can be passed to the static_mapbox function.

query_tiles Get information about features in a tileset using the Tilequery API

Description

Get information about features in a tileset using the Tilequery API

Usage

query_tiles(
location,
tileset_id,
radius = 0,
limit = 5,
dedupe = TRUE,
geometry = NULL,
layers = NULL,
access_token = NULL

)

Arguments

location The location for which you’d like to query tiles, expressed as either a length-2
vector of longitude and latitude or an address you’d like to geocode.

tileset_id The tileset ID to query.

radius The radius around the point (in meters) for which you’d like to query features.
For point-in-polygon queries (e.g. "what county is my point located in?") the
default of 0 should be used.

limit How many features to return (defaults to 5). Can be an integer between 1 and
50.

dedupe Whether or not to return duplicate features as identified by their IDs. The de-
fault, TRUE, will de-duplicate your dataset.

geometry The feature geometry type to query - can be "point", "linestring", or "polygon".
If left blank, all geometry types will be queried.

layers A vector of layer IDs you’d like to query (recommended); if left blank will query
all layers, with the limitation that at most 50 features can be returned.

access_token A Mapbox access token, which can be set with mb_access_token().

Value

An R list containing the API response, which includes information about the requested features.
Parse the list to extract desired elements.

48 recipe_layer

See Also

https://docs.mapbox.com/help/tutorials/find-elevations-with-tilequery-api/

Examples

Not run:

library(mapboxapi)

elevation <- query_tiles(
location = "Breckenridge, Colorado",
tileset_id = "mapbox.mapbox-terrain-v2",
layer = "contour",
limit = 50

)

max(elevation$features$properties$ele)

End(Not run)

recipe_layer Prepare a formatted recipe layer for use in a Mapbox Tiling Service
recipe

Description

Prepare a formatted recipe layer for use in a Mapbox Tiling Service recipe

Usage

recipe_layer(
source,
minzoom,
maxzoom,
features = feature_options(),
tiles = tile_options()

)

Arguments

source The tileset source ID. This is returned by mts_create_source() or can be re-
trieved from your Mapbox account with mts_list_sources().

minzoom The minimum zoom level at which a layer can be viewed.

maxzoom The maximum zoom level at which a layer is rendered; the layer will still be
visible past the maximum zoom level due to overzooming.

features A list of feature options, possibly generated with feature_options().

tiles A list of tile options, possibly generated with tile_options()

https://docs.mapbox.com/help/tutorials/find-elevations-with-tilequery-api/

recipe_layer 49

Value

A recipe layer list to be used in mts_make_recipe().

See Also

https://docs.mapbox.com/mapbox-tiling-service/reference/

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#
Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

https://docs.mapbox.com/mapbox-tiling-service/reference/

50 static_mapbox

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

static_mapbox Return a static Mapbox map from a specified style

Description

This function uses the Mapbox Static Maps API to return a pointer to an "magick-image" class
image or a httr::response object from the static map image URL.

Usage

static_mapbox(
location = NULL,
buffer_dist = 1000,
units = "m",
style_id,
username,
style_url = NULL,
overlay_sf = NULL,

https://www.mapbox.com/static-maps

static_mapbox 51

overlay_style = NULL,
overlay_markers = NULL,
longitude = NULL,
latitude = NULL,
zoom = NULL,
width = NULL,
height = NULL,
bearing = NULL,
pitch = NULL,
scale = 0.5,
scaling_factor = c("1x", "2x"),
attribution = TRUE,
logo = TRUE,
before_layer = NULL,
access_token = NULL,
image = TRUE,
strip = TRUE

)

Arguments

location An input location for which you would like to request tiles. Can be a length-4
vector representing a bounding box, or an sf object. If an input sf object is
supplied, use the buffer_dist argument to control how much area you want
to capture around the layer. While the input sf object can be in an arbitrary
coordinate reference system, if a length-4 bounding box vector is supplied in-
stead it must represent WGS84 longitude/latitude coordinates and be in the order
c(xmin, ymin, xmax, ymax).

buffer_dist The distance to buffer around an input sf object for determining static map,
specified in units. If location is a POINT object of 2 rows or less and buffer_dist
is 0 or NULL, a 1 unit buffer is applied to try to ensure the creation of a valid
bounding box for the map area.

units Units of buffer_dist; defaults to "m" (meters). If buffer_dist is a units class
object, the units argument is ignored.

style_id A style ID (required if style_url is NULL).

username A Mapbox username (required if style_url = NULL).

style_url A Mapbox style url; defaults to NULL.

overlay_sf The overlay sf object (optional). The function will convert the sf object to
GeoJSON then plot over the basemap style. Spatial data that are too large will
trigger an error, and should be added to the style in Mapbox Studio instead.

overlay_style A named list of vectors specifying how to style the sf overlay. Possible names
are "stroke", "stroke-width" (or "stroke_width"), "stroke-opacity" (or "stroke_opacity"),
"fill", and "fill-opacity" (or "fill_opacity"). The fill and stroke color values can
be specified as six-digit hex codes or color names, and the opacity and width val-
ues should be supplied as floating-point numbers. If overlay_style is NULL, the
style values can be pulled from columns with the same names in overlay_sf.

52 static_mapbox

overlay_markers

The prepared overlay markers (optional). See the function prep_overlay_markers
for more information on how to specify a marker overlay.

longitude, latitude
The longitude and latitude of the map center. If an overlay is supplied, the map
will default to the extent of the overlay unless longitude, latitude, and zoom are
all specified.

zoom The map zoom. The map will infer this from the overlay unless longitude, lati-
tude, and zoom are all specified.

width, height The map width and height; defaults to NULL

pitch, bearing The map pitch and bearing; defaults to NULL. pitch can range from 0 to 60, and
bearing from -360 to 360.

scale ratio to scale the output image; scale = 1 will return the largest possible image.
defaults to 0.5

scaling_factor The scaling factor of the tiles; either "1x" (the default) or "2x"

attribution Controls whether there is attribution on the image. Defaults to TRUE. If FALSE,
the watermarked attribution is removed from the image. You still have a legal
responsibility to attribute maps that use OpenStreetMap data, which includes
most maps from Mapbox. If you specify attribution = FALSE, you are legally
required to include proper attribution elsewhere on the webpage or document.

logo Controls whether there is a Mapbox logo on the image. Defaults to TRUE.

before_layer A character string that specifies where in the hierarchy of layer elements the
overlay should be inserted. The overlay will be placed just above the spec-
ified layer in the given Mapbox styles. List layer ids for a map style with
get_style(style_id = style_id, username = username, style_url = style_url,
access_token = access_token)[["layers"]][["id"]]

access_token A Mapbox access token; which can be set with mb_access_token.

image If FALSE, return the a httr::response object from httr::GET using the static image
URL; defaults to TRUE.

strip If TRUE, drop image comments and metadata when image = TRUE; defaults to
TRUE.

Value

A pointer to an image of class "magick-image" if image = TRUE. The resulting image can be ma-
nipulated further with functions from the magick package.

Examples

Not run:

library(mapboxapi)

points_of_interest <- tibble::tibble(
longitude = c(-73.99405, -74.00616, -73.99577, -74.00761),
latitude = c(40.72033, 40.72182, 40.71590, 40.71428)

tile_options 53

)

prepped_pois <- prep_overlay_markers(
data = points_of_interest,
marker_type = "pin-l",
label = 1:4,
color = "fff"

)

map <- static_mapbox(
style_id = "streets-v11",
username = "mapbox",
overlay_markers = prepped_pois,
width = 1200,
height = 800

)

map

End(Not run)

tile_options Specify tile options for an MTS recipe layer

Description

Specify tile options for an MTS recipe layer

Usage

tile_options(
bbox = NULL,
extent = NULL,
buffer_size = NULL,
limit = NULL,
union = list(where = NULL, group_by = NULL, aggregate = NULL, maintain_direction =

NULL, simplification = NULL),
filter = NULL,
attributes = NULL,
order = NULL,
remove_filled = NULL,
id = NULL,
layer_size = NULL

)

54 tile_options

Arguments

bbox, extent, buffer_size, limit, union, filter, attributes, order,
remove_filled, id, layer_size

Tile options in the MTS recipe. See https://docs.mapbox.com/mapbox-tiling-service/
reference/#tile-configuration for more information on the available op-
tions.

Value

A list of tile options, likely to be used in recipe_layer.

See Also

https://docs.mapbox.com/mapbox-tiling-service/reference/

Examples

Not run:
library(tidycensus)
library(mapboxapi)
options(tigris_use_cache = TRUE)

Get the national data on median age
us_median_age_tract <- get_acs(

geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
year = 2020,
geometry = TRUE

)

Get it for counties as well
us_median_age_county <- get_acs(

geography = "county",
variables = "B01002_001",
year = 2020,
geometry = TRUE

)

Create a source from the datasets
mts_create_source(data = us_median_age_tract,

tileset_id = "us_median_age_tract",
username = "your_mapbox_username")

mts_create_source(data = us_median_age_county,
tileset_id = "us_median_age_county",
username = "your_mapbox_username")

Build out the recipe. First, create a recipe layer with
appropriate options. We'll want a larger tile size and to restrict the minzoom
to 4; a maxzoom of 12 will be fine as we can overzoom beyond that
#

https://docs.mapbox.com/mapbox-tiling-service/reference/#tile-configuration
https://docs.mapbox.com/mapbox-tiling-service/reference/#tile-configuration
https://docs.mapbox.com/mapbox-tiling-service/reference/

tippecanoe 55

Your source ID will be returned by `mts_create_source()`, so use that value
tract_layer <- recipe_layer(

source = "mapbox://tileset-source/your_mapbox_username/us_median_age_tract",
minzoom = 4,
maxzoom = 12,
tiles = tile_options(layer_size = 2500)

)

county_layer <- recipe_layer(
source = "mapbox://tileset-source/your_mapbox_username/us_median_age_county",
minzoom = 2,
maxzoom = 5

)

recipe <- mts_make_recipe(tracts = tract_layer, counties = county_layer)

Validate the recipe
mts_validate_recipe(recipe)

Create a tileset from the recipe
mts_create_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = recipe)

Publish the tileset
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

If necessary, update the recipe
mts_update_recipe(tileset_name = "median_age_acs",

username = "your_mapbox_username",
recipe = new_recipe)

Publish the tileset again after you've updated the recipe
mts_publish_tileset(tileset_name = "median_age_acs",

username = "your_mapbox_username")

End(Not run)

tippecanoe Generate an .mbtiles file with tippecanoe

Description

Tippecanoe is a tile-generation utility for building vector tilesets from large (or small) collections
of GeoJSON, Geobuf, or CSV features. The tippecanoe function requires that the tippecanoe utility
is installed on your system; see the tippecanoe documentation for installation instructions. Once
installed, tippecanoe can be used in large visualization workflows in concert with Mapbox Studio.

https://github.com/mapbox/tippecanoe#installation

56 tippecanoe

Usage

tippecanoe(
input,
output,
layer_name = NULL,
min_zoom = NULL,
max_zoom = NULL,
drop_rate = NULL,
overwrite = TRUE,
other_options = NULL,
keep_geojson = FALSE

)

Arguments

input The dataset from which to generate vector tiles. Can be an sf object or GeoJSON
file on disk.

output The name of the output .mbtiles file (with .mbtiles extension). Will be saved in
the current working directory.

layer_name The name of the layer in the output .mbtiles file. If NULL, will either be a
random string (if input is an sf object) or the name of the input GeoJSON file
(if input is a file path).

min_zoom, max_zoom
The minimum and maximum zoom levels for which to compute tiles. If both
min_zoom and max_zoom are blank, tippecanoe will guess the best zoom levels
for your data.

drop_rate The rate at which tippecanoe will drop features as you zoom out. If NULL,
tippecanoe will drop features as needed in the densest tiles to stay within Map-
box’s limits.

overwrite If TRUE, an existing .mbtiles file with the same name will be overwritten.

other_options A character string of other options to be passed to the tippecanoe program.

keep_geojson Whether nor not to keep the temporary CSV or GeoJSON file used to generate
the tiles. Defaults to FALSE.

Details

Mapbox also offers the Mapbox Tiling Service as an alternate way to transform datasets into vector
tiles.

Examples

Not run:

Workflow: create a dynamic tileset for dot-density mapping
library(tidycensus)
library(sf)
library(mapboxapi)

https://docs.mapbox.com/mapbox-tiling-service/guides/

upload_tiles 57

Get population data for Census tracts in Vermont
vt_population <- get_decennial(

geography = "tract",
variables = "P001001",
state = "Vermont",
year = 2010,
geometry = TRUE

)

Convert to representative dots - 1 per person
vt_dots <- st_sample(

vt_population,
size = vt_population$value

)

Use tippecanoe to create dynamic tiles
tippecanoe(

input = vt_dots,
output = "vt_population.mbtiles",
layer_name = "vermont_population",
max_zoom = 18,
drop_rate = 1.5

)

Upload to your Mapbox account for visualization
A Mapbox secret access token must be set with mb_access_token()
to upload data to your account
upload_tiles(

input = "vt_population.mbtiles",
username = "kwalkertcu",
tileset_id = "vt_population_dots",
multipart = TRUE

)

End(Not run)

upload_tiles Upload dataset to your Mapbox account

Description

Upload dataset to your Mapbox account

Usage

upload_tiles(
input,
username,

58 upload_tiles

access_token = NULL,
tileset_id = NULL,
tileset_name = NULL,
keep_geojson = FALSE,
multipart = FALSE

)

Arguments

input An sf object, or the path to the dataset to upload as a character string.

username Your Mapbox username

access_token Your Mapbox access token; must have secret scope

tileset_id The ID of the tileset in your Mapbox account

tileset_name The name of the tileset in your Mapbox account

keep_geojson Whether or not to keep the temporary GeoJSON used to generate the tiles (if the
input is an sf object)

multipart Whether or not to upload to the temporary AWS staging bucket as a multipart
object; defaults to FALSE.

Examples

Not run:

Example: create a tileset of median age for all United States Census tracts
Requires setting a Mapbox secret access token as an environment variable

library(mapboxapi)
library(tidycensus)
options(tigris_use_cache = TRUE)

median_age <- get_acs(
geography = "tract",
variables = "B01002_001",
state = c(state.abb, "DC"),
geometry = TRUE

)

upload_tiles(
input = median_age,
username = "kwalkertcu", # Your username goes here
tileset_id = "median_age",
tileset_name = "us_median_age_2014_to_2018"

)

End(Not run)

Index

addMapboxTiles, 2

check_upload_status, 4

feature_options, 4

geocoder_as_sf, 7
geocoder_as_xy, 7
get_mb_access_token (mb_access_token),

15
get_static_tiles, 8
get_static_tiles(), 13
get_style, 9, 10
get_vector_tiles, 10
ggspatial::layer_spatial, 13
ggspatial::layer_spatial(), 8, 11

httr::GET, 52
httr::response, 50, 52

layer_static_mapbox, 11
layer_static_mapbox(), 13
leaflet::addTiles(), 3
leaflet::leaflet(), 3
list_styles, 10
list_styles (get_style), 9
list_tokens (mb_access_token), 15

mapboxapi, 14
mapboxapi-package (mapboxapi), 14
mapboxGeocoderInput, 14
mb_access_token, 13, 15, 52
mb_access_token(), 3, 9, 10, 15, 18, 21, 23,

28, 47
mb_batch_geocode, 17
mb_directions, 19
mb_geocode, 21
mb_isochrone, 23
mb_isochrone(), 24
mb_matrix, 25
mb_optimized_route, 27

mb_reverse_geocode (mb_geocode), 21
mts_create_source, 29
mts_create_tileset, 31
mts_get_recipe, 33
mts_list_sources, 35
mts_list_tilesets, 36
mts_make_recipe, 38
mts_publish_tileset, 40
mts_update_recipe, 42
mts_validate_recipe, 44

prep_overlay_markers, 13, 46, 52

query_tiles, 47

recipe_layer, 48

static_mapbox, 47, 50
static_mapbox(), 11

tile_options, 53
tippecanoe, 55, 55
tm_static_mapbox (layer_static_mapbox),

11
tm_static_mapbox(), 13
tmap::tm_rgb, 13
tmap::tm_rgb(), 11
tmap::tm_shape, 13

upload_tiles, 57

59

	addMapboxTiles
	check_upload_status
	feature_options
	geocoder_as_sf
	geocoder_as_xy
	get_static_tiles
	get_style
	get_vector_tiles
	layer_static_mapbox
	mapboxapi
	mapboxGeocoderInput
	mb_access_token
	mb_batch_geocode
	mb_directions
	mb_geocode
	mb_isochrone
	mb_matrix
	mb_optimized_route
	mts_create_source
	mts_create_tileset
	mts_get_recipe
	mts_list_sources
	mts_list_tilesets
	mts_make_recipe
	mts_publish_tileset
	mts_update_recipe
	mts_validate_recipe
	prep_overlay_markers
	query_tiles
	recipe_layer
	static_mapbox
	tile_options
	tippecanoe
	upload_tiles
	Index

